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A Theoretical Analysis of Multicomponent Gas Separation
by Means of a Membrane with Perfect Mixing

Y. SHINDO, N. ITOH, and K. HARAYA

NATIONAL CHEMICAL LABORATORY FOR INDUSTRY
TSUKUBA, IBARAKI 305, JAPAN

Abstract

Numerical simulation of the separation of gas mixtures of H,, CHy, CO, and
CO, through a porous glass membrane was carried out. It was found that the
mole fractions of the components on the permeate side varied irregularly
depending on the operating conditions., feed mole fractions, relative perme-
abilities, and operation factor. Theoretical analysis of membrane separation in
multicomponent system was made. Some basic information were derived with
respect to gas separation with a membrane for a multicomponent system.

INTRODUCTION

With the recent development of improved membranes and advances in
hollow fiber technology and fabrication techniques of gas permeators,
membrane separation is becoming economically competitive with other
separation methods, such as distillation and adsorption. Separation of
gas mixtures by permeation has been considered a standard chemical
engineering unit operation.

Applications of membrane separation which have received attention
include recovery of hydrogen from refinery streams and ammonia plants,
sulfer dioxide removal from flue gases, hydrogen and carbon monoxide
separation from synthesis gases, separation of product from reaction
gases, and so on. When membrane separation is applied in such an
industrial process, it is assumed to involve a multicomponent system.
Most previous papers on gas separation studied binary gas mixtures.
There are a few reports (/-6) about multicomponent gas separation
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through a membrane. However, the relationships between degree of
separation and operating conditions have not been investigated.

In this paper the separation of gas mixtures of H,, CH,, CO, and CO,
through a porous glass membrane is numerically simulated. It is found
that the mole fraction of each component on the permeate side varies
depending on operating conditions, feed mole fractions, and relative
permeabilities. It is desirable that the degree of separation can be
predicted theoretically from operating conditions. This paper presents a
theoretical analysis of multicomponent gas separation in a single stage.

BASIC EQUATIONS

Equations for Steady-State

Figure 1 illustrates a single permeation stage of multicomponent gas
separation by permeation with perfect mixing. The stage is separated into
two sections by a membrane of area 4 and thickness 8. P, and P, are the
pressures of the feed (high pressure) side and the permeate (low pressure)
side, respectively. F;and F, are the inlet and outlet flow rates on the feed
side, respectively, and F, is the outlet flow rate on the permeate side. n is
the number of components and @, is the permeability of the ith
component. It is presumed that the permeabilities Q,, Q,, @, ..., @, are

Q|>Q2>"'>Qn (n

x; is the mole fraction of the gas component in the feed stream at the
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FI1G. 1. Schematic diagram of single permeation stage with perfect mixing.
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inlet. x,; and y,; are the mole fractions of the ith component on the high
pressure side and the permeate side, respectively, which have the
following properties:

kZ=I Xp =1 ()
2 X =1 3)
’Z‘ Yo =1 4)

The assumptions utilized in this study are as follows.

(1) Permeation obeys Fick’s law.

(2) Permeability of each component is the same as that of the pure
gas, and is independent of pressure.

(3) Effective membrane thickness is constant along the length of the
permeator.

(4) Pressure drops of the feed and permeate gas streams are negligibly
small.

(5) A perfect mixing situation exists on both sides on the membrane.

By taking total and component balances over the membrane
area A, the following equations can be obtained on the basis of the above
assumptions:

S|
F,= 3 28 (P~ Py) 5)

F

Ypi =

Q—éA(Phxoi—Plyni) (i=1....n) (6)

Substituting Eq. (5) into Eq. (6) and solving for y, gives

= — Qi(Phxai - Plyni) (7)

y pi
2 Qu(Pixo = Piyp)
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Solution of Simultaneous Equations

The problem is, briefly, to determine x,; and y, (i = 1,...,n), when Q,,
x; (i =1,...,n), Py, P, and A/5 are known. On dividing Eq. (7) by the
member of Eq. (7) with i = j, the following relation between components i
and j is obtained:

M = Qj(Phxoj - Plypj)

Vi QP = Piyy) ®)
The mass conservation yields
x;Fy = x,F, + y,(F;—F,) 9)
The stage cut 8 is defined as
o= = Fo (10)
F;
From Egs. (9) and (10),
x5 = X(1 —8) +y,0 (1
Pressure ratio y and relative permeability g; are defined by
y=P,/P (12)
q9;=Q:/Q, (13)

Eliminating x,; and x,; from Eq. (8) by the aid of Eq. (11) and solving for
¥y yields
- X5qji

(xa/yp) + (g7 — D(¥ + 6 — v6)

Vi (14)

Concentration factor B;, operation factor y, and the separation factor of
the ith component to the jth component o; are defined as

B = ypi/xﬁ (15)

y=7y+6-70 (16)
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FIG. 2. Mole fractions on the permeate side as a function of 1 — y.

From Eq. (20), the function f(B;) is defined as

n

N = Xeqri -
S®) = 25 (qu=Tw ! @b

Differentiating Eq. (21) by B;, one obtains

df(Bn) _ i Xed ki 22)

dp; S {1+ B — Dv}?
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FI1G. 3. Mole fractions on the permeate side as a function of 1 — y.

One may recognize from Eq. (22) that the function f(B;) is a mono-
toneously increasing function. The condition B; > 1 is given as f(1) < 0,
that is (see Appendix 3),

n

— X4k _q1<o 23
i 1+ (g — Dy (23)

Especially for the 1st component, which is always the most permeable
component (see Appendix 4):
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FI1G. 4. Mole fractions on the permeate side as a function of 1 — y.

Yl — 1 <0 24
k=1 1+ (g — Dy (24)

For the nth component, which is always the least permeable component,
(see Appendix 4):

XiGin -1>0 25
i=1 1+ (qe. — DV (25)

Therefore if Eq. (23) is satisfied, the ith component is concentrated after
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FI1G. 5. Separation factors of hydrogen to the other gases as a function of 1 — y.

permeation. The most permeable component is always concentrated, and
the least permeable component is always diluted.

Relationship between Concentration Factor and Operation Factor

Differentiating Eq. (20) by v gives

B _ 3

dy

Xeqii(qui — 1) / i Xk ki

i (/B + (g — DWE & {1+ BAgu — Dv)?

(26)
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FIG. 6. Separation factors of methane to the other gases as a function of 1 — .

For the 1st component, dB,;/dy < 0 because ¢,; < 1(k = 1,...,n). For the
nth component, dp;/dy > 0, because ¢;, > 1 (k = 1,. .., n). Therefore, the
concentration factor of the most permeable component increases with a
decrease of the operation factor, and that of the least permeable
component decreases with a decrease of the operation factor. For the
other component, the concentration factor varies and has a maximum
value against the operation factor. At the maximum point, B; and v satisfy
dB;/dv = 0, that is,
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FI1G. 7. Separation factors of carbon dioxide to the other gases as a function of 1 ~ y.

Xequi{qui — 1) =0 27
S {1/ + (qu — D] (27
Limiting Concentration Factor

The concentration factor B, at v = 0 is defined as the limiting
concentration factor B*. From Eq. (20), B* is given as
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1

B =—— (28)
Z XiGki
P
-2 (29)
kzl X Q

Considering the results in the previous section, we conclude that for the
most permeable component, the limiting concentration factor is at its
maximum value. For the least permeable component, the limiting
concentration factor is at its minimum value.

Relation between the Separation Factor and the Relative
Permeability and Operation Factor

Inserting Eq. (19) into Eq. (17) yields
a; =¢q;+ (1 —q,)Bv (30)
=(g;— DA -Bw) + 1 (1)
Since y,; > 0, we obtain the following relation from Egs. (7) and (11):
1-By>0 (32)
Differentiating Eq. (31) by v gives

%y _ g1 33
=Bl - ay) (33)

From Egs. (31), (32), and (33), we conclude that if Q; > Q,, the separation
factor a; is larger than 1, and increases with decreasing y. If Q; < Q;, the
separation factor a; is smaller than 1, and decreases with decreasing .

Limiting Separation Factor

The separation factor a; at y = 0 is defined as the limiting separation
factor o). From Eqgs. (18) and (29):
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M=

- X qrj
af =" (34)
Z Xk ki
k=1
=Q;/Q; (35)

Considering the results of the previous section, it is concluded that the
limiting separation factor is at its maximum if Q; > @, and at its
minimum if @; < Q,.

CONCLUSIONS

Several elementary facts with respect to multicomponent gas separa-
tion with a membrane were derived as follows.

(1) When Eq. (23) is satisfied, the ith component is concentrated after
permeation. The most permeable component is always concentrated. The
least permeable component is always diluted.

(2) The concentration factor of the most permeable component
increases with a decrease of the operation factor y. The concentration
factor of the least permeable component decreases with a decrease of the
operation factor. For the other component, its concentration factor has a
maximum value in the region 0 < y < 1. Then the concentration factor
and the operation factor satisfy Eqgs. (20) and (27).

(3) When Q, > Q;, the separation factor a; is always larger than 1. It
increases with a decrease of the operation factor. When Q; < @, the
separation factor a; is always smaller than 1. It decreases with a decrease
of the operation factor.

APPENDIX 1

Figure A-1 shows a general profile of the function f(B;). With the
condition that y,(i = 1,..., n) is always positive, one obtains the
following condition from Eq. (19):

qji
1/B; + (g — Dy

>0 (A-1)

This condition can be rewritten as
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1

0<B, <—mm—7—
P (I = gir)v

G=1,....,n=1) (A-2)

0<B, (A-3)

Equation (20) has n solutions, as shown in Fig. A-1. However, there is
only one solution which satisfies the above condition.

APPENDIX 2
l-y=(1-v)1-6) (A-4)
Ph—Pl Ff_FI'

-~ TP, F, (A-5)
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Therefore, 1 — vy is the product of the ratio of the pressure difference P, —
P, to P, and the ratio of F, (= F;— F,) to F,.
APPENDIX 3
As shown in Fig. A-2, the line B; = 1 exists in the region expressed by

Eq. (A-2) or Eq. (A-3). The function f(B,) monotonously increases in this
range, and therefore Eq. (23) is obtained.

APPENDIX 4
S Xeqk = S o -6
N e ) il I gy e ey vy S
< k; x, (=1 (A-7)
‘f(Bl) I
I
I
1 | B
0 i
| : -
|
! I
fop - - |
|
1 I
§ I
I

FIG. A-2. Tllustration of the function f(8;) near B; = 1.
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because g, > land 0 < y < 1.

S X9 kn = S Xk )
P oy P sl O v v o S G

> x  (=1) (A-9)

because ¢,; < 1. Therefore, we obtain Eqgs. (24) and (25).

SYMBOLS

S(B) function defined by Eq. (21) (-)

n number of components (-)

P, total pressure on the high pressure side (Pa)

P, total pressure on the permeate side (Pa)

o permeability of the ith component (mol/s - m - Pa)

4 relative permeability, Q;/Q; (-)

X mole fraction of the ith component on the feed
stream at the inlet (-)

X, mole fraction of the ith component on the high
pressure side (-)

Vi mole fraction of the ith component on the per-
meate side (-)

a; separation factor defined by Eq. (17) (-)

af limiting separation factor, Q,/Q; (-)

B: concentration factor of the ith component, y,/x;
)

B* limiting concentration factor defined by Eq. (28)
¢)

Y pressure ratio, P,/P, (-)

e stage cut defined by Eq. (10) (-)

v operation factor defined by Eq. (16) (-)

Subscripts

I,n most and least permeable components

iLj. k i, j, and kth components

H,, CH,, CO, CO, hydrogen, methane, carbon monoxide, and carbon
dioxide gases
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